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Abstract

Fundamental solutions of a problem in the theory of elasticity are constructed for a half-space under the action of a load moving
at constant velocity which does not change with time in a moving system of coordinates. On the basis of these solutions, the
displacements of the medium are determined in the case of a load which moves along a cylindrical surface in the medium itself or
over its boundary surface. Subsonic, transonic and supersonic cases are considered.
© 2007 Elsevier Ltd. All rights reserved.

The investigation of the dynamics of extended underground structures under the action of perturbations leads to the
solution of boundary value problems for continuous media with stress concentrators in the form of cylindrical cavities
and inclusions. There is a fairly detailed bibliography on this question in Refs. 1,2. When the depth at which the
structure is bedded is less than five times its characteristic diameters (for example, the tunnels of underground railways
are often situated at such depths), it is necessary to take account of the closeness of the surface of the ground. Problems
for an elastic half-space with a free boundary in the case of a load which moves at a specified constant velocity along a
cylindrical surface within the medium and, also, problems of the dynamics of a multiply connected elastic half-space,
which is weakened by cylindrical cavities of various shapes, under the action of loads which move along their surface
are models for such investigations.

The dynamics of an elastic half-plane under the action of a load which moves at a constant velocity on its boundary
have previously been investigated in Ref. 3. The fundamental solutions, in the three-dimensional case, of the equations
of motion of an elastic medium under the action of a moving load concentrated on the axis were constructed in Ref.
4 and the method of boundary integral equations (MBIE) for solving boundary-value problems in the dynamics of an
elastic medium with cylindrical cavities and boundaries under the action of surface loads which move at a constant
velocity has been developed on the basis of these solutions.>"

The construction of fundamental solutions for a half-space under the action of concentrated moving sources is not
only useful from the point of view of the development of the MBIE for solving problems in the dynamics of an elastic
half-plane with cylindrical cavities. Such solutions enable one to model the action of different distributed sources
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located both on the surface of the ground and close to it, to determine the stress and strain fields generated by them
and to investigate wave processes. This last class of problems is typical in geophysics, seismology and the dynamics
of underground constructions.

1. Formulation of the problem

An elastic isotropic medium D~ with Lamé parameters A and . and a density A occupies the half-space x >0.
A load, which is constant in time and concentrated on the cylindrical surface D C D™, D=S§ x (—o00, 00), the axis of
which is parallel to the x3 axis, moves at a constant velocity ¢ along this axis and its components are represented in the
form of the Fourier integral

Pi(x,2) = Oyny(x) = [ p(x Oexp(il)dl, xeS: z = xy+et
e (1.1)

te (—°°’ °°), X = (xlaxz)

Suppose the components of the load are non-zero in a bounded set, that is, supp,Pi(x, z) € (0, a), which corresponds
to real physical problems. The boundary of the half-space is stress-free

G = 0 when X = 0, j=1,2,3 (1.2)

where o;; are the components of the stress tensor, which are related to the components of the displacements u; by
Hooke’s law

0, = HiDy 0 0wy, HY = A8,0;+ (8,0, + 8,49)) (13)

9; is the Kronecker delta, the subscripts i, j and k take the values 1, 2 and 3, d; = 0/dx;, and summation is carried out
from 1 to 3 in the case of repeated indices i, j and k.

We will assume that, in the case of fixed z, the components of the boundary load P; are integrable on the contour
S. If there are no bulk forces (F=0), or they have a structure which is similar to the boundary load, the stresses and
strains in the moving system of coordinates (x1, x2, z) satisfy the equations

ajo,-j—pczaiuﬁpF,. =0, i,j=123; 9,=0; (1.4)
When account is taken of relations (1.3), we reduce Eq. (1.4) to the form

A;j(31,95, 9 u;+cF; = 0
-2 -2 -2 2 (1.5)

M; = c/c;j are the Mach numbers and ¢; = /(A + 2)/p and ¢2 = /pu/p are the velocities of the bulk and shear waves
in the elastic medium respectively.

We will consider three cases: subsonic (¢ < ¢3), transonic (c3 < ¢ < c¢1) and supersonic (¢ > c1). In the first case (M < 1,
M, < 1), system (1.5) is of elliptic type, in the second case (M1 < 1, M3 > 1) the system is elliptic for the bulk component
of the displacements and hyperbolic for the shear strains>* and, in the supersonic case (M} > 1, Ma > 1), the system is
strictly hyperbolic. In the last two cases, shock waves can propagate if the following conditions are imposed on the
discontinuities in the displacements and stresses in the fronts>"

2
[u;] =0, [hdu;~hQu] =0, [hio;—pchdu] =0 (1.6)

where & is a wave vector. It is required to find the solution of the problem which satisfies the decay condition at infinity

u—0 when R—eo, R = Jx+x5+7°, x,20 (1.7)

and certain radiation conditions which we shall introduce later in Section 3.
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2. Green’s tensor for an elastic half-space with a free boundary in the case of a moving load

In order to solve the problem, it is convenient to employ Green’s tensor V(x, z, y, ) for an elastic half-space with
a free boundary, constructed in a moving system of coordinates. We have the following boundary-value problem to
determine it: it is required to find, in the case of fixed (v, 7) = (v1, ¥2, T), y1 >0, the solution of the equations

A3,,9, 9)V; = §8(x-y,z-1), x>0 2.1
which satisfies the conditions on the free surface
x, = 0: H(3;,0,3,)Vy =0, m,i=123 (2.2)

and the radiation conditions at infinity.
We shall seek the solution in the form

V= Ulx-y,z2-1)+ IT(x, y, 2, T)

where Uj- are the components of Green’s tensor of Eq. (2.1) for an unbounded space corresponding to F; =

Sl}B(xl , X2, 2) (8(x1, x2, z) is a generalized singular 8-function). This tensor was constructed in Ref. 4, and its compo-
nents have the form

Ul(x, 2) = ¢38:f0a(r, ) + ¢ (30,f 1 (n D) =32,  n(r D)) 7 = Ial = yJxi + 3

where

+
|zl + V},

+
-V, +mr when c<c

1
Anfo(r,z) = F, anfy(r,z) = |z|1n
k

z+V,
m,r

9 _
2nfo(r, 2) = ;/-é, 2nfou(r,2) = ﬁk(zln —ij when ¢ >c¢;

k

2R foi(r, 2) = =8(2)Inr, 2mf,(r,z) = z6(z)Inr when ¢ = ¢

Vi = JEmprt, 9 = 8(z—myn), mk='\/|1“Mi|

and 6(z) is Heaviside’s function. Note that, at supersonic velocities, the carrier U is the interior of a cone with angle
arctg (1/my) at the vertex; supp U= {(x, 2): z>mq||x||}.

The tensor IT must satisfy the homogeneous equations of motion, the conditions for the radiation of waves at infinity
and the following boundary conditions on the free surface

x, = 0: HY\(3y, 8y, 0TI} = -0 (x -y, 2-1), = = Hyy(3;,05,0)Ug (2=, 2~ 1) 2.3)

It describes waves, reflected by the boundary of the half-space, which are generated by the action of a moving source
concentrated at a point x=y, z="T. In order to construct this tensor, we will employ the vector-field potentials

n;(n = D‘]I‘(al, 82, 33)(1’;" = ak¢'1n + eki3ai¢’2n + ekﬂe“3aiaj¢’3n, k, m = 1, 2, 3 (24)

Here e are the components of the unit skew-symmetric Levi-Civita pseudotensor. The first potential describes the
gradient component of the field and the other two describe the vortex component. It can be shown that the potentials
<I>J’” satisfy the equations

9@ - M070T = 0, j=1,23 2.5)

By virtue of the linearity and homogeneity of the medium HZ‘ x,v,z,7) = l'l;:‘ x,y,z—1).
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In order to construct the solution, we will use the direct and inverse Fourier transforms of the tensors and potentials
with respect to z (it is sufficient when 7=0):

M = [T (xy, Qexp(izd)dG, Ty = 2in [ I (x -y, D) exp(-iGz)dz

We define U} and ®™ in a similar way.
In Fourier-transform space, the equations for the potentials take the form

@1 +35tm )&} = 0, j=1,23 2.6)

The plus sign corresponds to subsonic loads (M;<1) and the minus sign to supersonic loads (M;>1). The boundary
conditions are transformed to the form

k v m = .
x, =0 Bj(al, 0,,i0)® = -Zji(x-y8), j=12,3
S ok . 2.7
B] = Hj](a], 829 IC)Dm(a]’ 829 lg)
Hence, the problem of constructing the transform of the required tensors reduces to determining the potentials which
satisfy Eq. (2.5), the boundary conditions on the free surface (2.7), certain radiation conditions and the decay conditions

at infinity for the waves

& = o(r"*?) when r = x—y| > 2.8)

3. Determination of the potentials of the reflected waves

The potentials d_DI;. can be presented in the form of the superpositioning of the surface and plane waves which are
reflected from the free surface of the half-space:

=k .
@ = [ j(n, & y)exp(ixn - x,/n” £ miChdn (3.1

Reyn’+m;(*20, Imyn’+mit><0 (3.2)

The plus (minus) sign is taken if the load is subsonic (supersonic) for the corresponding value of j. It can be verified
that potentials (3.1) satisfy Eq. (2.5). Conditions (3.2) are the radiation conditions for the waves reflected from the
boundary of the half-space. The first of these conditions ensures the attenuation of the solutions at infinity and the
second condition shows that the reflected waves move from the boundary of the half-space which corresponds to the
physical representations.

The integrands in relation (3.1) can be found from boundary conditions (2.7), the right-hand sides of which also
have to be expanded in Fourier integrals. When x; =0, we have

o

Ehx-5»8) = [ajm, { yexplinn)dn (3.3)

—oo

(concerning the definition of the integrands a];», see below in Section 6).
Substituting expressions (3.1) and (3.3) into conditions (2.7), we obtain, for example, in the subsonic case

J.[Bi(—a/n2+m,2-t;2, in, i)} +a,lexp(ix,n)dn = 0, k = 1,2,3
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from which, by virtue of the arbitrariness of x,, we conclude that the expression in the square brackets is equal to zero.
As a result, we have a linear system of three equations for determining cp’l’?. Solving it, we find

07 = —a,A%M, & y)/AM, L), AM,§) = det{Bi(— n’+miC’ in, iC)}

Here A is a Rayleigh determinant which, in this case, has the form

A= 4v2Jv2—MfC2Jv2—M§C2—(2v2—M§C2)2, v: = (‘;2+n2 (3.4)

and Aﬁ is the corresponding cofactor. The properties of the Rayleigh determinant are well known. In particular, in the
case being considered,

AM,{) =0 when M = 2L, /M5—1 = 0, Mg = clcg (3.5)

where cg, the velocity of the Rayleigh surface wave (cg <¢3), is determined from the Rayleigh equation®

2
a1-alJ1-05-(2-03)" = 0, @ = cgle;

When c < cg, the determinant A(m, {) # 0 for any real n and . Using formulae (3.1) and (2.4), we construct in this
case the potentials and displacements of the medium Vl.] . All the integrands are continuous and tend quite rapidly to
zero at infinity which can be shown using the property of the boundedness of the carrier of a moving load. Hence, the
integrals exist and they satisfy the decay conditions at infinity. The solution has therefore been constructed in this case.

When cg < c < ¢3, a solution of Eq. (3.4) exists but there are no solutions which decay at infinity. If we drop the decay
condition for the displacements behind the moving load (when z > 0) then, to construct the solution, it is necessary to
transform the integration contour in the neighbourhood of the points —mg and +ng by passing around them in the upper
and lower half-planes of the complex m-plane where radiation conditions (3.2) are satisfied. Using Jordan’s lemma for
integration in the complex plane, we obtain

B} = vp. [ ¢jn, & y)exp(ingn — 5"+ mIC)dn +

+ Y [MiRes@} (N, &, y)exp(E ixgNg —x, N5 + M5 )]
+

where Resfis the residue of the function at the above-mentioned point. The two terms in the last summation correspond
to the upper and lower sign and describe Rayleigh surface waves, which the moving load generates in this case. Note
that the potentials do not decay behind the load at infinity:

&) ~ 2mi [ Resqf(4ny, & Y)exp(- izl £ ixMg—x, Mg+ miL)dG when 2 +oo

The plus sign is taken when x» >0 and the minus sign when x; <0.

When ¢ = cg, the integrands in expression (3.1) also have strong non-integrable singularities in the sense of a principal
value and, in this case, a steady-state solution of the problem does not exist.

The calculations are carried out in an analogous manner for the supersonic and transonic cases for which A(m,
0) # 0 for all m € (—o0, 00).

4. Fundamental spatially-periodic solutions

In order to determine the Fourier transforms of the boundary functions when x; =0, we will determine the Fourier
transform of the tensor U with respect to z. To do this, we employ the complete Fourier transform of this tensor,
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which has previously been constructed in Ref. 4. Its incomplete transform with respect to two of the Fourier variables
corresponding to x1 and x, enables us to construct the Fourier transform of the tensor U with respect to z:for subsonic
speeds

2nTl(x, §) = &5 8K o(myl¥Ir) + (c£) 28,3 (Ko(mylIr) - Ko(m, || 7))

and, for transonic and supersonic speeds,
4iT](x, §) = ;"8 Ho(m,y|Ulr) + (c8)*9,9,(Ho(m,|C|r) — F(my|¢] )

where F(&) = 2im~ ! Ko(£) for transonic speeds and F(&) = Hy(£) for supersonic speeds, K is MacDonald’s function, H

is the Hankel function of the second kind (H(gz) when { >0) and of the first kind (H(()l) when {<0) and r = 4 /x% + x%.
Unlike the symbols for the derivatives d; and 9, the symbol 93 corresponds to multiplication by L.

In the subsonic case, the function Ko(mr|C|lexp(i(x3 + ct)) describes waves which decay exponentially as r — oo
and propagate along the z axis (cylindrical surface waves). In the supersonic case, the choice of the Hankel functions
is associated with the sign of the index of the exponent exp(ilc?) since it is well known® in this case that the above
mentioned functions just describe the potentials of waves which satisfy the Sommerfeld radiation conditions at infinity.

5. Fundamental stress tensors

Using Hooke’s law (1.3), we introduce the stress tensors which are generated by the tensor U(x —y, z) with the
components

Sf‘(j(x, Y, Z) = H:;‘(al, 82, 33)U£(x -y Z), Ff(x, ¥, 2, n) = Si.cj(x’ y, z)n]

, (5.1)
Tf(x7 y’ z’ n) = F;((y’ x’ Z’ n)
where?
21\:c2 i 2 2
]
Ti(x,y,z,n) = (2M]-M3)n;0,f; -

m (5.2)
- Mg(a}”kakfoz + niajf02) - 2nkaiajak(f01 -fo)
Ti(x,y,2,n) = ~Ti(y,x,2,n) = -T{(x, y,2,-n) forany ¢ (5.3)

and the following lemma is true (see the preprint mentioned in Footnote 1).

Lemma 1. For a fixed k, the tensor T with the components Tl-k is the basic solution of Eq. (1.5) in the case when the
components of the body force have the form

Fi = A3, 8+ 1(3{n;,5+n,3,9) (5.4)

where 8 =8(x1 — y1, X2 — Y2, 2).

Convolution of the tensor U with the characteristic function of the set H; (x, z), where G~ is any domain bounded
by a Lyapunov surface G, enables us to obtain a formula which is similar to the Gauss formula for the potential of the
double layer of the Laplace equation.

Lemma 2. When c<c», the tensor T satisfies the relation
pS/HG(x,2) = [Ti(y-x1~2n(y,1)dS(y, ) +

G

+pe’ [U] (v~ %, 1= Dn (3, DS (3, )
G
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For (x, z) € G~, both integrals are regular and Hg = 1. For (x, z) € G, the first integral is singular. It is taken in the
sense of a principal value and H; = 1/2.

If G=D is a cylindrical surface, the second integral is equal to zero and formula (5.4) is analogous to the Gauss
formula in the static theory of elasticity.’

The tensor T plays a fundamental role in the construction of the boundary integral equations (BIE) for solving
boundary-value problems in the case of moving loads in cylindrical cavities in elastic media. In the case of transonic
and supersonic velocities, see Ref. 5 concerning the construction of the BIE of boundary-value problems.

6. Stresses in the boundary of a half-space

In order to construct the tensor V, it is necessary to determine the integrands in formula (3.3). Taking account of
relations (5.1), (5.2) and (2.3), we define the left-hand side of equality (3.3) by the following expression when x; =0

3—’;1 | = (2M? — M2)819,For ~ ME(813, Fon + 8.0, F02) +20,0,,(For - Fon)

6.1)
foj = Ko(mj|Gr)/(2m), c<cj;  foj = iHy(mi[C|r)/4, c>c;

To represent expression (6.1) in the form of the Fourier integrals (3.3), we next use a plane-wave expansion of cylindrical

functions,! that is, when x1 —y1 <0, we have

Ko(kr) = 3 j’“"")dn H ) = o j KN k) gy 62)

RV

Here (7, k%) = exp(ixom + (x1 — y)VM? + k2), Héz)(kr) = H(()l)(kr), where a bar over a function is the sign of the
complex conjugate. This enables us to represent the boundary stresses in the form of the Fourier integrals (3.3). To do
this, we substitute expansion (6.2) corresponding to a given velocity into expression (6.1) using the representations

T, 1’ m))
A/T” (6.3)

We obtain the second derivative by differentiating the integrals (6.3). We then group the terms accompanying exp(ixam)
which are also the integrands a]; in formula (3.3) if we put x; =0.
The problem of constructing Green’s tensor for an elastic half-space is therefore solved.

_ 1 - _
01 fo; = ij(ﬂ,iczmjz-)dn, 9,70 = 4nJ'

7. Moving surface loads

The action of moving loads on a cylindrical surface D in an elastic block can be replaced by a body force F which
is described by a singular generalized function, that is, by a simple layer on the surface D with components F; = p;(x,
2)dp(x, z). Then, using the properties of Green’s tensor, we obtain the solution of the problem

u; = [dS) [ Vit v, 2- Dy, e 1)

s —oo

If D is the surface of a cylindrical cavity in an elastic half-space, formula (7.1) provides a good description of the
displacement of the block at a sufficient distance from the cavity. In particular, it can be used to estimate the stress-strain
state of the surface of the ground (x; =0) along deeply laid underground train tunnels (at a depth greater than five times
the characteristic diameters of the cavity).
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8. Moving loads on the surface of the ground

In the case of moving loads on the surface of the half-space x; =0 it is necessary to construct the solution of the
homogeneous Eq. (1.5) under the action of a concentrated boundary force with components of the form Pj(x2, z) =
87’ 8(x2, z). The procedure for constructing the solution is exactly the same as the procedure for constructing the tensor
IT if we take

x = 0: H5\(3), 0y, 03)IT; = 878(x,, 2) (8.1)

instead of boundary condition (2.3). In this case, the integrands, which are analogous to those in formula (3.3), are
easily determined: a]; = (217)26];. It is necessary to use these when determining of the potentials in formulae (3.3).

The solution of the problem in the case of integrable loads with a finite carrier on the surface of the ground can be
represented in the form of a Duhamel integral

uj = JdS(y) [ T(x, y, 2= 1) pe(y, T)dt
S

—oo

9. Conclusion

The method of boundary integral equations (BIE) for an elastic space with a cylindrical cavity under the action of
moving loads, developed in Ref. 5, can be used to estimate the stress-strain state of a large mass in the neighbourhood
of a shallowly laid tunnel. Here, the need arises to solve the singular BIE for the union of two surfaces: the boundary
of the cavity and the plane boundary of the half-space. If the fundamental solutions for the half-space constructed
here are used as kernels to construct the BIE, then the BIE are only solved for the surface of the cavity. At the same
time, the number of boundary elements and, correspondingly, the order of the linear systems of equations used in the
discrete analogues of the BIE to solve them, is significantly reduced. However, in the computational scheme, this is
a more labourious procedure since, in order to determine Green’s tensor, it is necessary to calculate Fourier integrals
at each point of integration while the fundamental solutions for an elastic space are calculated using simple analytical
formulae.
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